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RESEARCH ARTICLE Open Access

Analysis of the equine “cumulome” reveals
major metabolic aberrations after maturation
in vitro
Jasmin Walter1* , Fabian Huwiler1, Claudia Fortes2, Jonas Grossmann2, Bernd Roschitzki2, Junmin Hu2,
Hanspeter Naegeli3, Endre Laczko2 and Ulrich Bleul1

Abstract

Background: Maturation of oocytes under in vitro conditions (IVM) results in impaired developmental competence
compared to oocytes matured in vivo. As oocytes are closely coupled to their cumulus complex, elucidating
aberrations in cumulus metabolism in vitro is important to bridge the gap towards more physiological maturation
conditions. The aim of this study was to analyze the equine “cumulome” in a novel combination of proteomic
(nano-HPLC MS/MS) and metabolomic (UPLC-nanoESI-MS) profiling of single cumulus complexes of metaphase II
oocytes matured either in vivo (n = 8) or in vitro (n = 7).

Results: A total of 1811 quantifiable proteins and 906 metabolic compounds were identified. The proteome contained
216 differentially expressed proteins (p≤ 0.05; FC≥ 2; 95 decreased and 121 increased in vitro), and the metabolome
contained 108 metabolites with significantly different abundance (p≤ 0.05; FC≥ 2; 24 decreased and 84 increased in
vitro). The in vitro “cumulome” was summarized in the following 10metabolic groups (containing 78 proteins and 21
metabolites): (1) oxygen supply, (2) glucose metabolism, (3) fatty acid metabolism, (4) oxidative phosphorylation, (5)
amino acid metabolism, (6) purine and pyrimidine metabolism, (7) steroid metabolism, (8) extracellular matrix, (9)
complement cascade and (10) coagulation cascade. The KEGG pathway “complement and coagulation cascades”
(ID4610; n = 21) was significantly overrepresented after in vitro maturation. The findings indicate that the in vitro
condition especially affects central metabolism and extracellular matrix composition. Important candidates for the
metabolic group oxygen supply were underrepresented after maturation in vitro. Additionally, a shift towards glycolysis
was detected in glucose metabolism. Therefore, under in vitro conditions, cumulus cells seem to preferentially consume
excess available glucose to meet their energy requirements. Proteins involved in biosynthetic processes for fatty acids,
cholesterol, amino acids, and purines exhibited higher abundances after maturation in vitro.

Conclusion: This study revealed the marked impact of maturation conditions on the “cumulome” of individual cumulus
oocyte complexes. Under the studied in vitro milieu, cumulus cells seem to compensate for a lack of important substrates
by shifting to aerobic glycolysis. These findings will help to adapt culture media towards more physiological conditions
for oocyte maturation.
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Background
Maturation of oocytes is the first step for in vitro pro-
duction (IVP) of embryos across species. Oocyte matur-
ation can occur under in vivo conditions where mature
oocytes are collected from the donor for fertilization or
under in vitro conditions. Usually, maturation in vitro is
accompanied by decreased developmental competence
among oocytes [1, 2]. The standard in vitro fertilization
(IVF) protocol in human reproduction includes the ovar-
ian stimulation of women with exogenous gonadotropins
to mature oocytes in vivo [3]. Even though maturation
and fertilization rates after in vitro maturation (IVM) are
promising, IVM correlates with decreased implantation
rates, increased miscarriage rates and increased live birth
rates [3–5]. Therefore, candidates for IVM in human
reproduction are mostly restricted to women at risk for
ovarian hyperstimulation syndrome (OHSS) [3, 6]. For
the equine species, direct comparisons of embryonic
development after in vivo and in vitro are available. In
one study in vitro matured oocytes were transferred into
the oviduct for in vivo fertilization and further develop-
ment. The results showed a highly decreased develop-
mental capacity of the in vitro matured oocytes (9%)
compared with that of the in vivo matured oocytes
(82%) [1]. Blastocyst rates after intracytoplasmic sperm
injection (ICSI) of in vitro matured oocytes achieved
only up to 35%, which was distinctly lower than their in
vivo matured counterparts (up to 70%) [2]. A special
mystery in equine-assisted reproduction is the complete
failure of classical IVF [7]. At present, this failure is
reflected by only two foals born after classical IVF that
originated from oocytes matured in vivo [8, 9]. All other
equine IVP foals have been generated by ICSI [10, 11].
Whether the cause of this issue is located on the male or
female side currently remains unclear [7, 12].
Available clinical data reflect the gap between in vitro

matured and in vivo matured oocytes with regard to the
developmental competence of oocytes. Fundamental
research to elucidate altered metabolism during IVM is
necessary to bridge this gap. Currently, high-throughput
“Omics” technologies provide the opportunity to obtain
a more global view on complex biological processes in
reproduction [13–16]. The cumulus complex (CC)
makes intimate contact with its oocyte and is required
to obtain the maturational competence of the oocyte
[17–21]. After maturation and fertilization, the CC is
not required for further development; thus, these cells
can serve as a unique source to noninvasively investigate
metabolism during oocyte maturation [22]. Most of the
available “Omics” studies on cumulus cells are transcrip-
tomic analyses of pooled cumulus or cumulus oocyte
complexes (COCs) that relate the gene expression profile
to the developmental competence of the oocyte [23–30].
Other studies examined changes in the cumulus

transcriptome between in vitro and in vivo matured
COCs [31–34]. All these studies were performed in spe-
cies other than the horse. An equine study on granulosa
cells, which have a developmental origin similar to that
of cumulus cells, observed age-related changes in their
transcriptome [35]. Another transcriptomic study on
equine granulosa and theca cells during dominant
follicular development identified distinct expression
profiles within these stages [36].
Studies focusing more closely on metabolism and the

CC phenotype, e.g., using proteomics or metabolomics,
are rare. One major limitation for the proteomics
approach is the large amount of COCs required for
analysis [37, 38] as enrichment of proteins prior to ana-
lysis is not possible. However, technical improvements
for these techniques currently allow the analysis of small
sample amounts [33, 39, 40]. Differences in the cumulus
proteome through maternal ageing in humans [41],
between cyclic and prepubertal whole porcine COCs
[42, 43], and bovine cumulus cells and oocytes [44] were
reported in studies using pooled CCs or COCs. How-
ever, beyond some practical benefits, pooling samples
has some drawbacks such as masking of outliers, dilu-
tion of low abundance proteins and the loss of the possi-
bility for the estimation of inter-individual variations
within groups [45, 46]. These issues lead to the reduced
applicability of pooled samples, especially for biomarker
discovery [47]. Global protein expression profiling, with-
out identification of altered protein spots, for human
cumulus cells of single oocytes was performed in 2006
[48]. This previous study observed alterations in the
protein expression profiles of cumulus cells under
different stimulation protocols, as well as minor aberrations
in fertilization outcomes using protein electrophoresis
after metabolic labelling [48]. Only recently, intact-
cellMALDI-TOF mass spectrometry (ICM-MS) in
combination with top-down proteomics was investigated
as tool for biomarker discovery in cumulus cells of single
bovine oocytes [49]. Data on the equine cumulus cell
proteome are not available in the literature. However, a
characterization of the mare follicular fluid composition
was performed during late follicular development using
2D-PAGE and mass spectrometry [50]. Similar metho-
dology was used to characterize seasonal variation in
equine follicular fluid [51].
Data on the cumulus cell metabolome are even scarcer

across species. Comparison of in vitro matured with in vivo
matured COCs revealed altered cellular metabolism-related
genes along with increased triglycerides in bovine cumulus
cells matured in vitro [34]. Glycosidic residues showed
significant quantitative and qualitative differences in equine
and porcine COCs after in vitro and in vivo maturation
[52]. In the horse, maternal obesity caused alterations in
the lipid fingerprint of preovulatory follicles and oocytes
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[53]. Individual analysis of lipid metabolism by desorption
electrospray ionization mass spectrometry (DESI-MS)
revealed distinct lipid profiles for individual oocytes
and embryos [54–56].
Simultaneous profiling of the cumulus cell proteome

and metabolome on the single COC level is a technical
challenge but provides the unique opportunity to reveal
the metabolism as close as possible to the phenotype.
This multi-omics (“cumulomics”) approach was chosen
for the characterization of aberrations in equine CC
metabolism during maturation in vitro. A highly sensi-
tive method allowed the analysis on the single COC
level, which provides the unique opportunity in the
future to directly correlate the “cumulome” with the
developmental competence of the corresponding
oocyte. The goal is to bridge the gap between in
vitro and in vivo maturation and improve the
culture conditions for IVM.
Equine oocytes also serve as an ideal model for trans-

lational research towards clinical human-assisted re-
productive technologies. Both species usually develop a
single dominant follicle of large volume and have a
similar follicular phase and interovulatory interval [37,
57, 58]. Additionally, the timing of ovulation seems to
be similar, occurring 36–37 h after human chorionic
gonadotrophin (hCG) administration [57]. Another bene-
fit of equine CCs for the study of metabolism during
maturation for translational research is the large amount
of cumulus compared to that in other species. This
abundance of cumulus allows for the collection of enough
material from single CCs for analysis. Therefore, the
results of this study may contribute to improving
human IVM conditions, which could save a wide range of
women from the exhausting process of ovarian stimu-
lation in the future.

Results
Proteome
A total of 1811 quantifiable equine proteins (NCBI-Ac-
cessions) were identified in the 15 cumulus samples. For
downstream analysis, the equine NCBI entries were
blasted to human orthologous UniProt Accession, which
yielded a total of 1714 unique entries. The proteome
contained 216 differentially expressed proteins (p ≤ 0.05;

FC ≥ 2; Table 1; Additional file 1: Table S1). Of these
proteins, 95 were significantly underexpressed in vitro,
and 86 of these proteins were linked to a unique ortho-
logous human UniProt identitiy (ID; Fig. 1). In the in
vitro group, 121 proteins (118 with unique orthologous
human UniProt IDs) were significantly overexpressed
(Fig. 2). Enrichment analysis of overrepresented Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
was performed in the STRING-DB version 10.5 [59].
The pathway “complement and coagulation cascades”
(KEGG ID 4610) was significantly overrepresented in the
underexpressed proteins in in vitro matured cumulus
(Fig. 1). Overrepresented KEGG pathways for the pro-
teins overexpressed in in vitro matured cumulus were
metabolic pathways (KEGG ID 01100), aminoacyl-tRNA
biosynthesis (KEGG ID 00970), fatty acid metabolism
(KEGG ID 01212) and fatty acid biosynthesis (KEGG ID
00061) (Fig. 2).

Metabolome
The quantifiable metabolome contained 906 metabolic
compounds; of these compounds, 108 showed a signifi-
cant difference (p < 0.05; FC > 2) in abundance between
the two maturation groups. Compared to the in vivo
matured cumulus, the in vitro matured cumulus ex-
hibited 84 compounds with a higher abundance and
24 compounds with a lower abundance (Table 1;
Additional file 2: Table S2). Putative metabolite IDs were
found for 6 compounds with lower abundance and for 22
compounds with higher abundance after IVM.

Essence of the altered “cumulome” in vitro
For an integrative view on the proteomic and metabolo-
mic results, compounds with significantly different abun-
dances were summarized in the following 10 metabolic
groups (Table 2, Fig. 3): oxygen supply (down in vitro: 5
proteins, 1 metabolite; up in vitro: 1 metabolite), glucose
metabolism (down in vitro: 3 proteins; up in vitro: 1 pro-
tein, 5 metabolites), fatty acid metabolism (down in vitro:
4 proteins; up in vitro: 5 proteins, 3 metabolites), oxidative
phosphorylation (up in vitro: 1 protein, 1 metabolite),
amino acid metabolism (down in vitro: 1 metabolite; up in
vitro: 1 proteins; 2 metabolites), purine and pyrimidine
metabolism (down in vitro: 1 protein; up in vitro: 7

Table 1 Summary of the proteomics and metabolomics results. The counts of proteins and metabolomic compounds that were
quantifiable and the counts that showed different abundances (p < 0.05; fold change (FC) > 2) in the in vitro matured cumulus
samples compared to those in the in vivo matured cumulus samples are presented

Method Quantifiable Different abundance
(p < 0.05; FC > 2)

Down
in vitro

Up
in vitro

Proteomics (proteins) 1811 (1714)a 216 (204)a 95 (86)a 121 (118)a

Metabolomics (compounds) 905 108 (28)b 24 (6)b 84 (22)b

awith unique orthologous human UniProt ID
bwith putative metabolite ID
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proteins, 3 metabolites), steroid metabolism (down in
vitro: 2 metabolites; up in vitro: 1 protein), extracellular
matrix (down in vitro: 8 proteins; up in vitro: 3 proteins, 1
metabolite), complement cascade (down in vitro: 14
proteins) and coagulation cascade (down in vitro: 17 pro-
teins). These 91 manually selected and grouped com-
pounds of the overall 232 metabolites and proteins with
unique IDs and significant differences between the two

maturation groups are listed in detail in Table 2 and Fig.
3. All significantly different proteins (Additional file 1:
Table S1) and metabolic compounds (Additional file 2:
Table S2) are listed in the article supplements.

Discussion
From a technical point of view, in this “cumulomics”
study, a simultaneous profiling of the cumulus cells

Fig. 1 Interaction network of proteins underexpressed in in vitro matured cumulus complexes (interaction confidence: high (> 0.7), database
matches n = 82). Highly enriched KEGG pathway in the group of underrepresented proteins is the complement and coagulation cascade (red
nodes, pathway ID 04610; n = 21; false discovery rate 1.3e− 32). The proteins of the complement cascade are represented by the red nodes within
the yellow circle (n = 8), whereas the proteins of the coagulation cascade are within the blue circle (n = 13)
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proteome and metabolome from the very same samples
was performed for the first time. This technical develop-
ment opened the gate to unravel the metabolic pheno-
type of cumulus cells under different maturation
conditions. The analysis was performed on the level of
single COCs, which holds the unique potential to di-
rectly correlate the “cumulome” with the developmental
competence of the corresponding oocyte. A novel com-
bination linking methanol based metabolite extraction
with filter-aided sample preparation (FASP) for proteo-
mics was adapted to for the minute sample amount of
single CCs [39]. Thus far, only studies focusing on single
“Omics” technologies have been available. Recently,
intact MALDI-TOF mass spectrometry was used to ana-
lyse the proteome of individual bovine oocytes, cumulus
cells and granulosa cells; a total of 439 shared peaks
were detected, and identification of the peaks was per-
formed using top-down proteomics on protein extracts
of pooled samples [49]. An analysis of the lipid profile of
single bovine oocytes and embryos was previously

conducted with DESI-MS [54–56]. For this study, a
combination of bottom-up proteomics by nano-HPLC
MS/MS and metabolome analysis by UPLC-nanoESI-MS
in negative mode was used for the analysis of individual
CCs. The detected “cumulome” included 1811 quanti-
fiable proteins as well as 905 quantifiable metabolic
compounds. Therefore, the analytical technique of the
“cumulomics” approach proved to be a highly sensitive
“holistic approach”, which can characterize metabolic
alterations on the single COC level.
Twenty-eight metabolites with putative metabolite IDs

and 204 proteins with unique UniProt IDs were signifi-
cantly different between the two maturation groups
(Table 1). These alterations affect a wide variety of meta-
bolic pathways (Fig. 3). The experimental design used an
available pool of slaughtered animals; thus, there was
certain heterogeneity with regard to donor mares (e.g.
breeds and ages) and follicles (Additional file 4). This
reflects the typical situation when immature COCs are
collected for assisted reproduction from client mares or

Fig. 2 Interaction network of proteins overexpressed in in vitro matured cumulus complexes (interaction confidence: high (> 0.7), database
matches n = 116). Enriched KEGG pathways in this group of proteins are metabolic pathways (red nodes, pathway ID 01100; n = 23; false
discovery rate 3.6e− 05), aminoacyl-tRNA biosynthesis (blue nodes, pathway ID 00970; n = 5; false discovery rate 0.0006), fatty acid metabolism
(green nodes, pathway ID 01212; n = 5; false discovery rate 0.0007) and fatty acid biosynthesis (yellow nodes, pathway ID 00061, n = 2, false
discovery rate 0.04)
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from slaughterhouse animals for research purposes.
Therefore, factors as age and follicular size cannot fully
be ruled out as confounding factors. Mean mare age was
higher in the in vitro group, still not significantly
different. Donor age was already shown to influence
the equine granulosa cells transcriptome [35] and
human cumulus proteome [41]. Gene expression pro-
files in granulosa cells vary throughout folliculoge-
nesis, for the bovine species this was illustrated on
the GranulosaIMAGE interactive web interface [60].
For the in vitro matured group it is not possible to
specify exactly the developmental phase of the donor
follicles, which can also impact the results. The
picture of altered metabolism after IVM is of course
influenced by maturation conditions. Differences in
media composition, gas concentrations or cell hand-
ling would obviously affect the altered “cumulome”.

Some of these potential effects are discussed in
relevant chapters in the discussion.

Oxygen supply
An interesting group of proteins underexpressed in in
vitro matured cumulus is related to oxygen supply; first
and foremost among these proteins is hemoglobin (Hb) A
and B. The expression of Hb in non-thyroid cells was
illustrated through recent advances in Hb research [61].
Recent studies documented hemoglobin B (HBB) expres-
sion in murine and human cumulus cells and exhibited
underrepresentation of HBB after IVM [49, 62–64]. The
function of HBB in these cells remains unknown. HBB
can ensure the necessary oxygen supply for the oocyte in
the reduced oxygen environment of the maturing follicle
[61, 65]. Under in vivo conditions, the estimated oxygen
concentrations in the follicle were approximately 1–5%

Fig. 3 The essence of the altered “cumulome” after maturation in vitro. Schematic view on aberrant metabolism in cumulus cells after maturation
in vitro compared to maturation in vivo. Mapped are 91 compounds with significantly different abundance in in vitro matured cumulus (78
proteins and 21 metabolites, full names are listed in Table 2). Relevant related proteins, metabolites or pathways not detected in this study
were imputed (dashed lines). Items with higher abundance after maturation in vitro are coloured in purple, items with lower abundance in
green. Circles surround proteins and hexagons metabolites
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[66], which is tremendously lower than the common 20%
under IVM conditions [67]. Hypoxia induces the expres-
sion of HBB through hypoxia inducible factor 1 (HIF-1)
[61, 68]. Higher levels of hypoxia inducible factor 1 α
(HIF1α) protein were detected in cumulus cells exposed
to low oxygen compared to those exposed to 20% oxygen
during IVM [64]. Therefore, the high oxygen concen-
tration under IVM conditions seems to be responsible for
the underrepresentation of hemoglobin A (HBA) and
HBB under in vitro conditions in this study. Hemopexin, a
scavenger enzyme for Hb, was also underrepresented in
the in vitro matured cumulus. When heme is released
through degradation of Hb, it is transferred to hemopexin.
Therefore, hemopexin acts as a detoxifying agent for free
heme with its pro-inflammatory and pro-oxidant effects.
Another hint for the potential oxygen binding/trans-

porting role of Hb in the cumulus oophorus is an analyte
that was also significantly underrepresented in the in
vitro matured group and seems to match hydroxy-
methylbilane (HMB), a precursor of heme biosynthesis.
The transcripts of enzymes involved in heme biosyn-
thesis were previously detected in COCs including the
enzyme directly related to HMB synthesis (Hmbs;
hydroxymethylbilane synthase) [63].
The in vitro underrepresented proteins ceruloplasmin

and transferrin work together in the transport of Fe2+,
which is required for heme synthesis. The underrepre-
sentation of these proteins contribute to the observed
underrepresentation of HBA, HBB and HMB. The
simultaneous underrepresentation of proteins and meta-
bolites involved in in vitro matured COCs strengthens
the hypothesis regarding an oxygen binding role of
hemoglobin within the COC, which seems to be defi-
cient in in vitro matured cumulus cells. Nevertheless,
heme is a constituent of hemoglobin and is required
for cytochromes, cholesterol biosynthesis (see below)
and hydrogen peroxide degradation (heme containing
monofunctional catalases). Therefore, other functions
of this molecule in this setting are also possible.
Heme catabolism results in the production of bilirubin,

a yellow compound that seems to be responsible for the
yellow colour of follicular fluid in humans [69]. One
analyte overrepresented in in vitro matured cumulus
(6.37_741.2851m/z) can be attributed to the conjugated
form of bilirubin, bilirubin glucuronide. The higher
abundance can be a result of increased heme catabolism,
therefore contributing to the underrepresentation of Hb
in IVM cumulus in this study.
In summary, the underrepresentation of all these

proteins and metabolites related to oxygen supply in in
vitro matured cumulus cells play an important role in
the further developmental potential of COCs. This
underrepresentation may be one reason for the impaired
developmental competence of in vitro matured COCs.

The addition of ferrohemoglobin (FE2+) to the IVM
medium improved blastocyst rates [63]. Moreover, the in
vitro condition used for the present study included a
high oxygen environment (20% oxygen), which seems to
result in the underrepresentation of these proteins
compared to that in COCs matured in vivo under
low oxygen conditions.

Glucose metabolism
Glucose metabolism plays a central role in the altered
compounds under in vitro conditions. First, glucose
transporter member 1 (GLUT1) was significantly un-
derrepresented in in vitro matured cumulus. GLUT1
was the highest expressed glucose transporter at the
mRNA and protein levels in mouse cumulus cells
where insulin stimulation resulted in glucose uptake
[70]. Bovine cumulus responded to hypoxia during
IVM through upregulation of GLUT1 gene expression
(Slc2a1), and HIF1α seems to play a role in mediating
this response [64]. For equine cumulus cells, the ex-
pression of the GLUT1 gene (Slc2a1) was previously
documented, with significantly higher abundance in
expanded CC than in compact cumulus cells [71].
These studies corroborate the observed GLUT1 under-
representation after maturation under the hyperoxic
(20%) in vitro condition in this study.
The importance of glucose metabolism for the matur-

ation of COCs is well described in the literature. Oocytes
possess only a limited capacity to metabolise glucose;
they depend on cumulus cells for the valorisation of
glucose [72]. The glycolytic compounds upregulated in
in vitro matured cumulus cells are phosphoenolpyruvate
(PEP) and lactate (Table 2, Fig. 3). The higher abundance
of these potential metabolites indicates an increased
glycolytic rate compared to that in in vivo conditions.
This theory is supported by overexpression of ATP

dependent 6-phosphofructokinase muscle type (PFK-M),
the main rate-limiting enzyme in glycolysis, after matu-
ration in vitro. PFK-M is regulated by ATP concen-
trations; a high ATP/ADP ratio downregulates the
glycolytic rate. Therefore, the overrepresentation after
IVM seems to be the result of an energy (ATP) deficit or
increased ATP consumption. For the equine species,
reduced glucose metabolism was detected for expanded
COCs. These COCs also exhibited higher maturational
competence (50% versus 21.7%). These expanded COCs
showed significantly lower glucose consumption along
with decreased pyruvate and lactate production [71].
Alternatively, the rate-limiting enzyme of the hexosa-

mine biosynthetic pathway (HBP) is glutamine-fructose-
6-phosphate aminotransferase 1 and 2 (GFPT1 and 2),
which was significantly underexpressed in in vitro ma-
tured cumulus cells. HBP participates in the production
of hyaluronic acid and products for O-linked
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glycosylation of proteins [72, 73]. The role of HBP can
explain the general observation of better expanded CCs
after maturation in vivo compared to that in vitro. For
the interpretation of these alterations in glucose metab-
olism, the available glucose under the two experimental
conditions must be taken in account. The concentration
of glucose in the natural surroundings of COCs, the
follicular fluid, is usually in the range of plasma levels.
Compared to other species, equine follicular fluid con-
tains slightly higher glucose concentrations, ranging
from 4.7 mmol/l in small follicles, with a drop to 3.3
mmol/l in larger follicles [74]. DMEM/F12, used for
IVM in this study, contains an almost 4-fold higher
(17.5 mmol/l) glucose concentration compared to that in
follicular fluid. The switch from TCM199-based ma-
turation medium (with a more physiological glucose con-
centration) to DMEM/F12-based maturation medium for
equine oocytes resulted in significantly better cleavage and
blastocyst rates, without alteration of the maturation rates
[75]. Therefore, the high glucose concentration during
IVM seems to be beneficial for the developmental com-
petence of equine oocytes. Nevertheless, a substantial
discrepancy for the “cumulome” between in vivo and
in vitro matured COCs was observed. In summary,
energy generation in vivo does not seem to heavily
depend on glycolysis unlike that in vitro.

Fatty acid metabolism
Under the experimental condition of this study, fatty
acid synthesis seems to be upregulated after maturation
in vitro. Three main enzymes involved in fatty acid
synthesis (ACSL; ACACA; FASN) were overrepresented
in in vitro matured cumulus. This overrepresentation is
most likely the result of an insufficient supply of fatty
acid in the maturation medium compared to that in
the follicular environment in vivo. The only source of
fatty acids in the medium was the supplemented
serum, which contains less essential linoleic acid than
is contained in the DMEM/F12-based medium used.
In potential support of this hypothesis, three compo-
nents of lipoproteins (APOA1 and 2; APOH) were
underrepresented after IVM. These proteins are in-
volved in lipid transport and storage and play an im-
portant role in providing lipids for the COCs. APOA1
was identified as crucial component of mare follicular
fluid throughout the reproductive seasons [51]. Lipid
metabolism is an important player in COC metabol-
ism and oocyte developmental competence [76]. The
special role of cumulus cells in supporting oocyte de-
velopmental competence through fatty acid synthesis
and oxidation was described in a bovine study [77].
Meiotic resumption was compromised by inhibition of
ß-oxidation in mouse [78, 79] and cow oocytes [77].
There was a close link to glucose consumption as

inhibition of ß-oxidation resulted in increased glucose
consumption. This finding are reflected in the altered
equine “cumulome” of in vitro matured COCs where
increased protein amounts for fatty acid synthesis and
glycolysis were major findings in the altered metabol-
ism after IVM. Interestingly, very similar results were
observed in a bovine study where an increase in the
lipid content of in vitro matured cumulus cells was
accompanied by upregulation of genes related to gly-
colysis and fatty acid synthesis, whereas ß-oxidation
was decreased after maturation in vitro [34]. Adipo-
nectin (ADIPO) was also upregulated in in vitro ma-
tured cumulus cells. This regulator prevents energy
deficits in cells, which was present in in vitro matured
COCs as indicated by a lower ATP/ADP ratio compared
to that in in vivo matured COCs [34].
In addition to the altered lipid related proteome, meta-

bolic compounds that can be related to metabolites in fatty
acid metabolism and membrane lipids were upregulated
after maturation in vitro. One analyte can be attributed to
DAG (40:7), a diglyceride that can be a precursor for tri-
glycerides, products of membrane lipid degradation or
serve as second messengers (https://pubchem.ncbi.nlm.nih.
gov). Two other potential compounds upregulated in vitro,
O- phosphoethanolamine and CDP-ethanolamine, belong
to the glycerophospholipid metabolism pathway (KEGG
pathway 00564). These metabolites are precursors for phos-
pholipids or products of phospholipid breakdown (https://
pubchem.ncbi.nlm.nih.gov). Metabolomic analysis of bo-
vine IVM COCs and denuded oocytes after IVM revealed
that cumulus cells modulate the lipid profile. Triacylgly-
cerols and phospholipids were higher in COCs than in de-
nuded oocytes [80]. Phospholipid metabolism compounds
accumulated in bovine IVM medium during maturation,
which makes production and secretion by COCs into the
medium likely [81]. In summary, the presented equine
results revealed major aberrations in fatty acid metabolism
after maturation in vitro on both levels of the analysed
“cumulome”. The synthesis of fatty acids in cumulus cells
seems to compensate for the insufficient supply of fatty
acids in COCs in vitro.

Oxidative phosphorylation
Oxidative phosphorylation occurs at the mitochon-
drial membrane and produces energy (ATP) using the
electrons generated from glucose in the TCA cycle. A
central part in the mitochondrial respiratory chain is
NADH-ubiquinone oxidoreductase chain 5 (Mt-ND5),
which was overrepresented after maturation in vitro.
This enzyme transfers electrons from NADH out of
the TCA cycle to the respiratory chain. The inter-
mediate electron acceptor for the enzyme is FMN,
which is reduced to FMNH2 in the electron transport
chain and was also overrepresented in in vitro
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matured cumulus cells. The overrepresentation of
these enzymes in oxidative phosphorylation might be
the consequence of an energy deficit in COCs during
maturation in vitro.

Amino acid metabolism
The altered metabolome after maturation in vitro also
indicates potential aberrations in the amino acid dis-
tribution. Phosphohydroxypyruvate (PHPA) and phos-
phoserine aminotransferase (PSAT1), which catalyse
the conversion to phosphoserine in the serine biosyn-
thesis pathway, were overrepresented after maturation
in vitro. This result can be explained by the under-
representation of a compound attributed to serine
after IVM. Serine is not an essential amino acid; thus,
the potential lack of this compound is most likely the
result of a higher demand e.g., for nucleotide synthe-
sis (see the section Purine and Pyrimidine Metabol-
ism). The overrepresentation of compounds in serine
biosynthesis support this hypothesis for an increased
serine demand in vitro. Opposed to serine, a meta-
bolic compound that can be attributed to leucine/iso-
leucine was overrepresented after maturation in vitro.
These aberrations in the equine “cumulome” after
IVM raise the question of whether higher concentra-
tions of serine in maturation media contribute to
more physiological culture conditions for COC
maturation.

Purine and pyrimidine metabolism
In in vitro matured cumulus, metabolomic compounds
(3) and proteins (7) that can be associated with purine
and pyrimidine metabolism were significantly overrepre-
sented. The first important protein linking the pentose
phosphate pathway (PPP) with purine and pyrimidine
biosynthesis is ribose-phosphate pyrophosphokinase
(PRPS1), which was overrepresented after maturation in
vitro. PRPS1 produces the metabolite phosphoribosyl
pyrophosphate (PRPP) from the substrate ribose-5-
phosphate from the PPP. PRPP is used for purine and
pyrimidine biosynthesis as well as purine salvage path-
ways. Purine and pyrimidine metabolism in cumulus
cells plays an important role in the orchestration of
meiotic resumption. The increase in enzymes involved
in purine biosynthesis in the cumulus of equine in vitro
matured cumulus cells can be a result of decreased
purine salvage compared to that in in vivo matured cu-
mulus cells. Energy requirements (ATP) for the purine
salvage pathways are distinctly lower (5x) as for de novo
synthesis [82]. However, the rate of salvage pathway
depends on PRPP concentration; therefore, it can be
hypothesized that in vitro maturated cumulus cells suffer
from a lack of PRPP. Upregulation of enzymes in de
novo synthesis tries to compensate for this lack of PRPP.

This issue would result in increased energy requirements
for nucleotide production compared to those in in vivo
conditions, which explains the shift in glucose metabo-
lism towards the PPP (PRPP production) and glycolysis
(ATP production).

Steroid metabolism
Diphosphomevalonate decarboxylase (MVD), an enzyme
catalysing the last reaction in the mevalonate pathway,
was overrepresented in in vitro matured cumulus. The
mevalonate pathway converts mevalonate in sterol iso-
prenoids (cholesterol) or non-sterol isoprenoids (e.g.,
heme-A or ubiquinone) [83]. MVD is responsible for the
synthesis of isopentenyl diphosphate (IPP). IPP is con-
densed with dimethylallyl diphosphate to form geranyl
diphosphate (geranyl-PP), a metabolite attributed to a
metabolomic compound that was underrepresented in
vitro [84]. MVD shows the highest expression in the
liver for cholesterol production [84], but its expression
was also documented in mouse ovarian follicles in the
antral stage [85]. Cumulus cells provide cholesterol to
their oocytes, which is transferred through gap junc-
tions. Synthesis of cholesterol in cumulus cells is stimu-
lated by oocyte secreted factors [86]. Cholesterol is the
precursor for steroidogenesis in mammalian cumulus
cells during maturation [87, 88].
Another metabolite MS signal underrepresented after

maturation in vitro was assigned to the steroid hormone
oestrone sulfate (oestrone-s). Estrone-s is biologically
inactive, but through sulfotransferases, it can be con-
verted into biologically active unconjugated estrone.
Therefore, estrone-s can serve as reservoir for estrone.
Expression of local steroid sulfatases was documented in
human cumulus cells [89]. The results of this study
revealed a deficit in potential metabolites in mevalonate/
steroid metabolism with upregulation of a key enzyme of
the mevalonate pathway in in vitro matured cumulus
cells. This finding can be interpreted as the struggle of
IVM COCs to produce sufficient steroids in compensa-
tion of the missing steroidogenic follicular surrounding.
Hemoglobin A (HBA) is a non-steroid isoprenoid

product of the mevalonate pathway, which was also un-
derrepresented after maturation in vitro (see the section
oxygen supply). Steroids can stimulate porphyrin (heme)
biosynthesis [90] and increase Fe incorporation [91].
Therefore, the lack of steroids in in vitro matured cumu-
lus cells can also result in suppressed heme biosynthesis.

Extracellular matrix/proteoglycans
Extracellular matrix (ECM) composition plays an impor-
tant role in the fertilization of the oocyte. The ECM
expands during the maturation process, and only success-
fully expanded ECM around cumulus allows correct adhe-
sion and oviductal pick-up of the COC, influencing sperm

Walter et al. BMC Genomics          (2019) 20:588 Page 14 of 24



motility and adhesion as well as fertilization [92–95].
Therefore, it is not surprising that a substantial portion of
alterations in the “cumulome” after IVM is associated with
ECM composition.
Through the gonadotrophin surge, cumulus cells are

stimulated to form a hyaluronan-rich ECM responsible
for the expansion of the CC [96]. However, inter-alpha-
trypsin-inhibitor heavy chains 1–4 (ITIH1–4) were un-
derrepresented in in vitro matured cumulus. This group
of proteins is responsible for retaining hyaluronic acid
(HA) in the cumulus matrix for expansion [97, 98]. A
putative upregulated compound in in vitro matured CCs
was chondroitin-4-sulfate (CHOND4). For mice, the
binding of HA during maturation in the cumulus
oophorus was hypothesized to be enabled by the release
of chondroitin sulfate into the culture medium (in vitro)
or follicular fluid (in vivo). This exchange of chondroitin
sulfate with HA leads to stabilization of the cumulus
ECM through a covalent interaction of HA and ITIH
[99]. These results are in accordance with the presented
equine “cumulome” data where ITIHs were underrepre-
sented after IVM and CHOND4 was overrepresented.
That is, during IVM, CHOND4 might be not sufficiently
released into the culture medium and replaced by HA.
Mouse in vivo matured COCs were more resistant to
shear stress than in vitro matured COCs, which supports
this hypothesis [99].
Another protein underrepresented after IVM in this

context was heparan sulfate proteoglycan 2 (HSPG2,
Perlecan). HSPG2 is a core protein attached to three
glycosaminoglycan chains (heparan sulfate or chondro-
itin sulfate). HSPG2 is a main component of basement
membranes [100], but its expression in cumulus cells of
germinal vesicle stage oocytes from women [101] and
granulosa cells from cows [60] was previously docu-
mented. Heparan sulfate proteoglycan expression peaked
in rat preovulatory granulosa cells where the core
proteins, such as HSPG2, remaining constant through-
out the cycle. These proteoglycans can bind and activate
antithrombin III (also underrepresented in in vitro
matured cumulus); thus, they also possess a role in the
control of proteolysis and fibrin formation [102] (see
chapter coagulation cascade).
Vitronectin (VN), which was underrepresented after

IVM, is a glycoprotein found in ECM that promotes cell
adhesion. VN plays a role in the cytolytic complement
pathway through the regulation of membrane attack
complex (MAC) formation [103] (Fig. 3). VN in bovine
cumulus ECM showed a negative effect on sperm moti-
lity [104] as well as a dose dependent effect on oocyte-
sperm interactions [105]. Another important protein in
ECM that was underrepresented after IVM is fibronectin
(FN), another adhesive glycoprotein. FN is secreted by
cumulus cells during maturation [93], and induced

capacitation in human sperm [106]. FN content in hu-
man follicular fluid seemed to be a marker for oocyte
quality, maturity and fertilization capability [107, 108].
Recently, for mice COCs, the FN-integrin pathway was
shown to play an important role in cumulus expansion
during ovulation [109]. In human cumulus samples, FN
in younger women was higher than that in older women
[110]. Both findings illustrate that FN expression in
cumulus cells is positively associated with the oocyte
developmental potential. A novel specific splice variant
of bovine FN was observed in cumulus cells, which
raised the hypothesis of a special function of this variant
in cumulus cells [111]. In vitro matured equine oocytes
also possess a reduced capacity for further development,
and reduced expression of FN was observed in this
study. These data contribute to the available literature
and indicate a role of FN as a cumulus marker for
the developmental competence of corresponding
oocytes. Additionally, a role in the mediation of equine
sperm-oocyte contact seems likely but needs further
investigation.
Interestingly, serine protease HTRA1 was significantly

overrepresented in the in vitro matured cumulus. This
protease has a variety of targets but especially degrades
FN in the ECM. ECM remodelling by HTRA1 affects a
variety of pathobiological conditions such as osteoarth-
ritis, cancer, and Alzheimer’s disease [112]. In human
cumulus cells, HTRA1 expression was significantly
higher than that in granulosa cells [113], which can be
attributed to a special role of this protein in cumulus cell
ECM production. The upregulation of this protein in in
vitro matured cumulus might be responsible for the un-
derrepresentation of FN after maturation in vitro.
Another protein that was underrepresented in in vitro

matured cumulus and plays an important role in the
ability of oocytes to achieve their full developmental
competence is gap junction alpha 1 protein (GJA1;
Connexin-43 (CX43)). Oocytes share close bidirectional
communication with their surrounding oocytes. The
exchange of small molecules and cellular coupling via
gap junctions between cumulus cells and their surround-
ing oocyte is especially important [114]. The crucial role
of CX43-mediated cumulus oocyte communication for
the meiotic maturation of oocytes was documented for
bovine [115] as well as human oocytes [116]. The pre-
sence of open gap junctions in granulosa cells is neces-
sary for the maintenance of the oocyte in meiotic arrest.
Granulosa cells deliver cGMP through gap junctions to
the oocyte; this process maintains high levels of cAMP
in the oocyte high as well as meiotic arrest [117]. Diffe-
rences in gap-junctional coupling of equine oocytes were
found with regard to breeding season; 90% coupling was
detected in breeding season versus 55% interrupted
communication in the non-breeding season [118].
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Meiotic resumption of equine oocytes seemed to be
associated with a decline in CX43 protein in cumulus
cells, with significantly higher levels in in vitro than in in
vivo matured cumulus cells [119]. Nonetheless, available
equine gene expression data for GJA1 (CX43) in equine
cumulus cells showed no variation between in vivo and
in vitro maturated cumulus cells. Therefore, altered
protein expression seems to be a result of post-tran-
scriptional regulation [120]. For bovine oocytes, the ex-
pression level of CX43 in cumulus cells significantly
correlated with the developmental competence of the cor-
responding oocyte [114]. Whether this correlation is also
valid for the equine species needs further investigations.
Thus far, the discussed alterations with regard to ECM

composition were mostly compounds identified as under-
represented after maturation in vitro. Some candidates
showed an opposite trend with overrepresentation after
IVM. One of these candidates, dystroglycan (DAG1), is an
ECM glycoprotein that is poorly characterized in follicular
cells compared to some of the previously discussed mo-
lecules. In porcine granulosa cells, DAG1 showed a de-
crease in concentration with increasing follicle size [121].
Overrepresented epidermal growth factor receptor

(EGFR) is the transmitter of extracellular events in the
cells. EGFR kinase activity is responsible for gap junction
closure in response to LH, which results in meiotic
resumption [117]. The functionality of EGFR seems to
be one key factor for the oocyte to acquire developmen-
tal competence [122]. The addition of epidermal growth
factor (EGF) to the maturation medium of equine
oocytes significantly increases maturation rates [123].
For bovine oocytes, EGFR expression in cumulus cells
seems to be a marker for oocyte developmental compe-
tence [23]. All these data indicate a positive effect of
EGFR activity on oocyte developmental competence.
The overexpression of EGFR receptor in the in vitro ma-
tured samples can be a result of the underrepresentation
of a metabolic compound assigned to oestrone-s (under-
represented in in vitro matured cumulus, see the chapter
steroid metabolism). In breast cancer, oestrogen was
responsible for maintaining low levels of EGFR expres-
sion [124]. Another explanation for this upregulation
delivers the addition of 50 mg/ml EGF to the maturation
medium. EGF showed a positive effect on maturation in
many species and is routinely added to equine ma-
turation media [125]. In hepatic epithelial cells, EGF
increased EGFR mRNA 3–5-fold [126].

Complement Cascade
The most dominant proteome result is the massive over-
representation of the complement and coagulation
cascades (pathway ID 04610; String Enrichment Analysis
n = 21 proteins; complement cascade n = 8 proteins; false
discovery rate 1.3e− 32) in the group of proteins

downregulated in the in vitro matured cumulus. In total,
11 unique proteins are associated with the complement
cascade (Table 1, Fig. 3). The complement system is part
of the innate immune system and includes 30 proteins
overall. In this study, proteins of the classical and
alternative pathway of complement activation are
represented in the group of proteins with significantly
lower expression. In addition to the complement factors
C3, C4, C5 and C7 and the positive regulator CFB, nega-
tive regulators of the complement cascade (IC1, C4BP,
CFI, CFH, CLUS, VN) belonged to the underexpressed
proteins in the in vitro matured cumulus cells (Fig. 3).
An active complement system in the follicular fluid is

relevant for ovulation in vivo [127–129]. Previous
studies on the follicular fluid of mares revealed the pre-
sence of complement proteins in follicular fluid [50]
with seasonal variation [51]. Several complement pro-
teins seem to be shed within cell secreted vesicles into
the follicular fluid of mares [130]. Confirmation of gene
expression for several complement proteins in human
granulosa cells supports the hypothesis that these cells
are able to actively secrete complement factors [131].
For component C3, available studies indicate a role in
the developmental competence of the oocyte [132–134].
The reduced presence of 11 proteins of the complement
cascade supports the hypothesis that the lack of com-
plement proteins is responsible for the reduced develop-
mental competence of equine oocytes matured in vitro.
Moreover, complement component 3 plays a role in
sperm-oocyte-interactions [135, 136]. Transferring this
context to the equine species, the lack of complement
factors in equine CCs after IVM contribute to the in-
ability of equine sperm to fertilize COCs. Further ex-
periments are necessary to clarify the role of the
complement system in the maturation process and the
mediation of equine sperm-oocyte interactions.

Coagulation Cascade
In in vitro matured cumulus, a wide variety of factors par-
ticipating in the coagulation cascade were significantly un-
derrepresented (n = 13; Table 2; Fig. 3). Three fibrinogen
chains (A,B,G), which are converted into fibrin in the
coagulation process by thrombin (F2a), belong to this
protein group. Thrombin is derived through enzymatic
cleavage of prothrombin (F2), which was also under-
represented in in vitro matured cumulus. Additionally, the
following group of thrombin inhibitors with anticoagulant
activity was underrepresented: heparin cofactor 2 (HEP2),
plasma serine protease inhibitor (IPSP), antithrombin 3
(ANT3), and plasma protease C1 inhibitor (IC1). More-
over, proteins involved in fibrinolysis were underrepre-
sented. Plasmin (PLM) is the enzyme responsible for
fibrinolysis; the precursor of PLM, plasminogen (PLG), as
well as the following proteins with inhibitory effects on
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PLM were underrepresented in the in vitro matured group:
alpha-2-antiplasmin (A2AP); alpha-2-macroglobulin (A2M)
and alpha-1-antiproteinase 2 precursor (A1AT). In sum-
mary, the in vitro matured cumulus appears to lack fibrino-
gen as well as the two main progenitors for coagulation
(F2) and fibrinolysis (PLG). The shortage of these factors
seems to be the result of massive consumption during
COC collection or IVM. In support of this hypothesis,
inhibitory factors for coagulation (IPSP, IC1, ANT3, and
HEP2) as well as inhibitory factors for fibrinolysis (A1AT,
A2AP, IC1, and A2M) were also underrepresented in the in
vitro matured cumulus.
The coagulation system is a dominant part of equine

follicular fluid [50, 51]. F2 and PLG were detected mainly
during spring anovulatory season. Fluctuation in follicular
coagulation factors throughout the reproductive season de-
livers explanations for different incidences for hemorrhagic
anovulatory follicles [51]. Fibrinogen concentrations in
equine follicular fluid were measured 40% higher than
those in plasma [137]. Therefore, there must be local
production/secretion of fibrinogen from follicular cells.
Analysis of gene expression from human granulosa and
cumulus cells of preovulatory follicles revealed the selective
expression of fibrinogen in granulosa cells [138]. Coagula-
tion system proteins that were upregulated in follicular
fluid from women who underwent IVF successfully
included fibrinogen, kininogen-1, prothrombin and coagu-
lation factor XII [139]. Regarding the role of the coagula-
tion system on oocyte maturation, available data are rare.
The analysis of bovine cumulus cell gene expression after
IVM revealed a significant enrichment of genes (n = 5)
involved in the complement and coagulation pathway [32].
Through upregulation of the transcriptional machinery for
these proteins, the cells try to compensate for the
increased consumption of these proteins during IVM.
Beyond the more general role of the coagulation system,
maturation-specific functions in the fertilization process
are possible. Antithrombin III (Serpin C1) plays a role as
chemoattractant for sperm [140]. A derivate of A2M
stimulates spermatozoa-zona pellucida binding in the
human cumulus matrix [141]. Therefore, the study
revealed specific candidates that hold the potential to
improve the fertilization of equine COCs.

Conclusions
In summary, according to these key findings, metabolism
under in vitro conditions seems to focus on fuelling cells
with energy via aerobic glycolysis as important candidates
involved in oxygen supply and glucose metabolism were
altered. This alteration can be the result of the culture
system used with high levels of oxygen and glucose. With
the help of these compounds, a lack of other important
substrates (purines, cholesterol/steroids, lipids, and amino
acids) for the COC might be overcome by increased

biosynthesis in cumulus cells. VN, FN, complement C3,
A2M and antithrombin III are potential players in
equine sperm-oocyte interaction and attraction and
were underrepresented after maturation in vitro. These
candidates deserve more attention to improve equine IVF
success in the future.
Overall, the presented alterations in the “cumulome”

after IVM point towards the future direction for the
development of more physiological IVM conditions. Fine
adjustment of media composition needs to focus on fatty
acids, amino acids and purines. This adjustment will
contribute to overcome the need for supraphysiological
oxygen and glucose concentrations, which seem to aid
the COC only by compensating for actual shortcomings
in media.

Methods
In vivo COC collection
Oestrous was induced by injection of 1 ml Cloprostenol
(Estrumate®, MSD Animal Health GmbH, Luzern,
Switzerland) in mares (n = 7) owned by the University of
Zurich that were designated for slaughter for non-
reproductive reasons (Additional file 4: Table S4). Mares
were regularly checked by transrectal ultrasonography;
when a follicle over 35 mm along with uterine oedema
was detected, ovulation was induced by injection of 2500
I.U. hCG (Chorulon®, MSD Animal Health GmbH,
Luzern, Switzerland). Slaughter was scheduled 30 h after
injection, and ovaries were excised from the carcasses to
harvest COCs from the dominant follicle by follicular
scraping. As expected, all recovered COCs had a nicely
expanded CC. Each COC was washed four times in
100 μl phosphate buffered saline solution containing
bovine serum albumin (PBS-BSA). In the last step,
oocytes were denuded using The Stripper® (Cooper
Surgical Fertility &Genomic Solutions, Malov, Denmark),
and 3 μl of the CC was collected for analysis. Denuded
oocytes were scanned under an inverted microscope for
extrusion of polar bodies. All COCs used in the analysis
(n = 8) were successfully matured, with extrusion of
the first polar body. Animal testing authorisation for
collection of in vivo matured oocytes was permitted
by the Zurich cantonal veterinary office (authorisation
number 153/13).

In vitro COC collection
Oocytes for IVM (n = 7) were collected from mares (n = 5)
slaughtered at local abattoirs. The animals were out of
oestrous and slaughtered for non-reproductive reasons
(Additional file 4: Table S4). Ovaries were excised from
the carcasses, and COCs from non-dominant follicles
were recovered by scraping. Only oocytes with compact
cumulus oophorus were selected for the IVM process. All
cells in close connection to the oocyte were defined as
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cumulus oophorus. IVM was performed for 30 h in 30 μl
droplets of Advanced DMEM/F12 based maturation
medium (Advanced DMEM/F-12, Thermo Fisher Scien-
tific, with 2.5mM Glutamax, 2.2 g/l NaHCO3, 1ml/100
ml foetal bovine serum, 50 ng/ml EGF, 10 IU/ml PMSG
and 5 IU/ml hCG). The maturation rate was 62%. After
the IVM period, COCs were treated as described for the
in vivo matured group with washing and denudation in
PBS-BSA. Only cumulus samples from successfully
matured oocytes were used for this study. All cumulus
samples were snap frozen and stored in liquid nitrogen
until preparation for “cumulomics” analysis.

Untargeted metabolomics analysis
Metabolites of single CCs were profiled using nano high-
performance liquid chromatography mass spectrometry
(UPLC–nanoESI-MS) in negative mode similar to that
suggested by Paglia et al. [142]. In brief, cells were lysed
and extracted in 100 μl MeOH/H2O (9:1 v:v) using 4
freeze/thaw cycles (1min liquid nitrogen; 5min high in-
tensity focused ultrasound (HIFU)). After centrifugation
(15min at 13000 rpm, at 4 °C), the supernatant with lipids
and metabolites was collected and stored at − 20 °C. The
pellet was collected and immediately processed for pro-
teomics analyses (see below). Prior to analysis, the extracts
were dried under a stream of nitrogen and reconstituted
in 20 μl water, further diluted with 80 μl 50mM ammo-
nium acetate in acetonitrile/MeOH (90:9 v:v) adjusted
with ammonium hydroxide to pH 9. Metabolites were se-
parated on nanoAcquity UPLC (Waters) equipped with a
BEH-Amide capillary column (200 μm× 150mm, 1.7 μm
particle size, Waters) by applying a gradient of 0.5 mM
ammonium acetate in water adjusted with ammonium
hydroxide to pH 9 (A) and 0.5 mM ammonium acetate in
acetonitrile adjusted with ammonium hydroxide to pH 9
(B) from 90% B to 50% B. The injection volume was 1 μl.
The UPLC was coupled to a Synapt HDMS G2 mass
spectrometer (Waters) by a nanoESI source. MS data were
acquired using negative polarization and all ion fragmen-
tation (MSE) over a mass range of 50 to 1200m/z at a
resolution of 22,000 (MS and MSMS). All solvents used
were of quality HPLC grade (Chromasolv, Sigma-Aldrich).
Metabolite data sets were evaluated with Progenesis QI
software (Nonlinear Dynamics, A Waters Company),
which aligns the ion intensity maps based on a reference
data set, followed by peak picking on an aggregated ion
intensity map. Detected ions were identified based on
accurate mass, and detected adduct patterns and isotope
patterns by comparison with entries in the Human Meta-
bolome Database (HMDB). A mass accuracy tolerance of
0.025 Da was set for the searches. Fragmentation patterns
were considered for the identifications of metabolites.
Quality controls were run on pooled samples and

reference compound mixtures to determine technical
accuracy and stability.

Proteomics analysis
After initial methanol extraction for metabolomics ana-
lysis, the pellet was immediately prepared for proteomic
analysis. Therefore, a sonoreactor-based cell lysis protocol
(SR) [143] was combined with FASP (adapted from [39]).
The SR-FASP protocol was specifically developed for the
analysis of the proteome for single COCs [40]. The pellet
was dissolved in 30 μl SDS lysis buffer (4% SDS, 100mM
Tris/HCL pH 8.2, 0.1M DTT–dithiothreitol) and incu-
bated at 95 °C for 5min. In the next step, samples were
treated with HIFU for 10min with amplitude of 65% in
cycle 0.5 (Sonoreactor UTR200; Hielscher Ultrasonics
GmbH). After cell lysis, protein concentration was
estimated with a Qubit® Protein Assay Kit (Life Technolo-
gies). A total of 10 μg of proteins were used for the
adapted FASP protocol [39]. Proteins were diluted in
200 μl UT buffer (Urea 8M in 100 nM Tris/HCL, pH 8.2)
and loaded on a Microcon-30 kDa Centrifugal Filter Unit
with Ultracel-30 membrane (Merck Millipore). The unit
was centrifuged at 14,000 g for 25min at room
temperature. A wash with 200 μl UT buffer followed by
centrifugation at 14,000 g for 25min was performed. Re-
duced proteins were alkylated with 100 μl iodoacetamide
0.05M in UT buffer during an incubation of 5 min,
followed by three washing steps with 199 μl UT and two
steps with 100 μl NaCl 0.5M. Protein digestion on the fil-
ter unit was performed overnight in a wet chamber at
room temperature using 120 μl 0.05M triethylammonium
bicarbonate buffer (pH 8.5) with trypsin (Promega) in a ra-
tio of 1:50 (w/w). After elution at 14,000 g, the peptide so-
lution was acidified using trifluoroacetic acid (TFA) to a
final concentration of 0.5%. Peptides were desalted using
Finisterre solid phase extraction C18 columns (Teknok-
roma), dried in a vacuum concentration and resolubilized
in LC-MS solution (3% acetonitrile, 0.1% formic acid).
Analysis of all biological samples (n = 15) was performed

in one analytical run in random order using reverse-
phaseLC-MS/MS on an Orbitrap Fusion mass spectrom-
eter (Thermo Scientific) coupled to a nano HPCL system
(EASY-nLC 1000, Thermo Scientific) in data dependent
acquisition (DDA) mode. A homemade frit-column
(75 μm× 150mm) packed with reverse phase material
(ReproSil-Pur 120, C18-AQ, 1.9 μm (Dr. Maisch HPLC
GmbH)) was coupled to the MS with a fused-silica spray
emitter (20 μm× 8 cm, tip: 10 ± 1 μm; New Objective). A
defined amount of 500 ng peptides per sample was loaded
to the column and analyzed by LC-MS/MS. For channel
A, the solvent composition was 0.1% formic acid in water,
and for channel B, it was 0.1% formic acid in acetonitrile.
Elution of peptides was performed using a flow rate of
300 nl/min with a gradient of 1 to 35% acetonitrile over
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120min, followed by a cleaning period for 10min with
98% acetonitrile. Full-scan mass spectra (300–1500m/z)
were acquired with a resolution of 60,000 at 200m/z after
accumulation to a target value of 5e5. Look mass correc-
tion (371,1010 and 445,12,003m/z) was used for internal
calibration, and the maximum cycle time between pre-
cursor masses was set to 3 s. Data dependent MS/MS
were recorded in a linear ion trap using quadrupole isola-
tion in a window of 0.7 Da. Selected ions were fragmented
with 30% fragmentation energy. The ion trap was run in
rapid scan mode with 1e2 as the target value and a ma-
ximum injection time of 35ms. Precursor ions with
charge state from + 2 to + 6 and a signal intensity of at
least 1e4 were selected for fragmentation. For 25 s, a
dynamic exclusion list was applied with activation of
maximum parallelizing ion injections. As reference, a pool
containing 5 μl of each cumulus sample was analysed in
the same analytical run and used as reference for aligning
in data analysis.
Label-free quantification was conducted with Progen-

esis QI for Proteomics Software (Nonlinear Dynamics, A
Waters Company). The reference for automatic aligning
was the raw-file of the sample pool. For peak picking,
the high sensitivity option was chosen, and only peptides
with charge 2, 3 and 4 were used for analysis. The top
five mass spectra were exported for a database search
using charge deconvolution and deisotoping options
with a minimum fragment count of 200 peaks per MS/
MS [144]. Spectra were searched against the NCBI data
base for horses (NCBI Taxonomy ID 9796, release date
20,170,523). For functional downstream analysis of pro-
teins, the database was blasted to human homologous
proteins from the canonical UniProt database (Tax ID:
9606, 20,161,209: file: fgcz_9606_reviewed_cnl_conta-
minantNoHumanCont_20,161,209.fasta). The database
was concatenated with reversed sequence information
for estimation of the false discovery rate [144]. The
search was run on Mascot Server v.2.4.3. (Matrix
Science), with a tolerance of 10 ppm for precursor ion
mass and 0.5 Da for fragment ion tolerance. Enzyme spe-
cificity was restricted to trypsin with an allowed maximum
of 2 missed cleavage sites. As fixed modification, only
carbamidomethylation of cysteine was specified, and for
variable modifications, deamidation of glutamine and
asparagine as well as protein n-terminus acetylation were
selected. Protein probabilities by the protein prophet algo-
rithm [145] were analysed in Scaffold v4.1.1 (Proteome
Software Inc.). Proteins containing similar peptides that
could not be discriminated by the MS/MS analysis were
grouped according to the principles of parsimony. To link
the MS1 features in Progenesis QI for proteomics with
peptide and protein information, we uploaded a Scaffold
spectrum report filtered for false discovery rates on the
peptide (5%) and protein (10%) levels. The overall false

discovery rate for quantifiable proteins with at least two
peptides was estimated at 0.2% using the target-decoy
strategy [144]. For protein quantification, the average of
the normalised abundance from the most intense 3
peptide ions of each protein group were calculated indi-
vidually for each sample [146]. This generates the norma-
lised quantitative protein abundance. Statistical testing
was performed on hyperbolic arcsine transformed values
using ANOVA. Differentially expressed proteins were
defined with a fold change > 2 along with p ≤ 0.05. Enrich-
ment analysis of overexpressed proteins in KEGG path-
ways was performed online using STRING-Database
(http://string-db.org) [147]. All mass spectrometry pro-
teomics data were handled using the local laboratory in-
formation management system [148] and all relevant data
have been deposited in the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identi-
fier PXD011086 [149].
Integrated analysis of proteomic and metabolomic

results was performed using KEGG Mapper v3.1 (release
date October 1st 2017; http://www.genome.jp/kegg/map-
per.html).

Additional files

Additional file 1: Table S1. All 216 differentially expressed proteins
(p ≤ 0.05; FC ≥ 2); 204 with unique UniProt IDs. Of these proteins, 95 were
significantly underexpressed in the in vitro matured group, and 86 of
these proteins were linked to a unique orthologous human UniProt ID
(Fig. 1). In the in vitro group, 121 proteins (118 with unique orthologous
human UniProt IDs) were significantly overexpressed. (XLSX 140 kb)

Additional file 2: Table S2. All 108 metabolic compounds with a
significant different (p < 0.05; FC > 2) abundance between the two
maturation groups. Here, 84 compounds showed a higher abundance in
the in vitro group and 24 compounds a lower abundance compared to
those in the in vivo matured group. For 28 compounds, putative metabolite
IDs were found (6 with lower abundance and 22 with higher abundance
after in vitro maturation). (XLSX 84 kb)

Additional file 3: Table S3. All 905 measured metabolomic compounds
(Progenesis QI Output Measurements). (XLSX 481 kb)

Additional file 4: Table S4. Additional information on donor mares and
follicles for the in vivo and in vitro matured groups. Mann-Whitney test
indicated no significant difference for mare age (p = 0.2) and a significant
difference for follicle size (p = 0.04) between the two maturation groups.
(XLSX 10 kb)
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